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Abstract: Fast radiative transfer (RT) methods are commonplace in most algorithms which retrieve
the column-averaged dry-mole fraction of carbon dioxide (XCO2) in the Earth’s atmosphere.
These methods are required to keep the computational effort at a manageable level and to allow for
operational processing of tens of thousands of measurements per day. Without utilizing any fast RT
method, the involved computation times would be one to two orders of magnitude larger. In this
study, we investigate three established methods within the same retrieval algorithm, and for the first
time, analyze the impact of the fast RT method while keeping every other aspect of the algorithm the
same. We perform XCO2 retrievals on measurements from the OCO-2 instrument and apply quality
filters and parametric bias correction. We find that the central 50% of scene-by-scene differences in
XCO2 between retrieval sets, after threshold filtering and bias correction, that use different fast RT
methods, are less than 0.40 ppm for land scenes, and less than 0.11 ppm for ocean scenes. Significant
regional differences larger than 0.3 ppm are observed and further studies with larger samples and
regional-scale subsets need to be undertaken to fully understand the impact on applications that
utilize space-based XCO2.
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1. Introduction

As of late 2020, several space-based missions are in operation with the goal to quantify
the concentration of carbon dioxide (CO2) in Earth’s atmosphere. These satellites are placed in
sun-synchronous low-Earth orbits and carry spectrometers with high spectral resolution to measure
reflected and backscattered spectra in the shortwave infrared (SWIR) wavelength region. The currently
operating instruments are GOSAT [1], launched in early 2009, OCO-2, launched in 2014, TanSat,
launched in 2016, GOSAT-2, launched in 2018 and most recently OCO-3 [2] which was launched in May
2019 and installed on the International Space Station. These five instruments share the same overall
concept, which is based on the measurement of two CO2 absorption bands in the SWIR near 1.6µm
and 2.06µm along with the oxygen A-band at 0.756µm which can be used to constrain the reference
oxygen column. While there are several other space-based instruments which obtain CO2 absorption
spectra in the thermal infrared region (TIR), such as Infrared Atmospheric Sounding Interferometer
(IASI), we focus only on measurements from the SWIR and relevant instruments. SWIR measurements
have sensitivity to the total CO2 column down to the surface, whereas TIR measurement sensitivity
is peaked at the middle and upper troposphere [3,4]. Both GOSAT and GOSAT-2 feature Fourier
transform spectrometers (TANSO-FTS and TANSO-FTS-2) that point to specific locations for each
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single measurement. In contrast, the TanSat and OCO-2/3 instruments are grating-type spectrometers
which sample the atmosphere in a push-broom manner with a small swath width of the order of 10 km.
The two different instrument types have a direct impact on sampling density and total number of
measurements collected in any given time range. For GOSAT [5] and GOSAT-2 [6,7], the integration
time of the two FTS instruments is about the same with 4 s for each measurement scene. OCO-2/3
and TanSat, on the other hand, collect 24 and 27 measurements per second respectively. While these
satellites orbit Earth around 15 times per day, the instruments collect between ∼104 (GOSAT) and
∼106 (OCO-2) measurements on the sunlit side of the Earth. Generally, between a third and half of
those measurements remain after screening for clouds. Routine data operations for OCO-2 involve
running the retrieval algorithm on the order of 60,000 of the clearest selected scenes for every day.
Future CO2-focused missions push that number even further up. The geostationary Carbon Cycle
Observatory [8], GeoCarb, is expected to measure well over a million cloud-free scenes over the
Americas every day. The proposed CO2M mission [9] will feature a constellation of at least three
satellites and a larger measurement count than GeoCarb. The computational resources to process these
measurements for operational services have thus required a significant increase and will continue to
do so.

The retrieval algorithms are designed to extract the column-averaged dry-air volume mixing ratio
of carbon dioxide (XCO2) using mostly a three-band approach. The two CO2 absorption bands contain
information on the column of carbon dioxide, whereas the O2 A-band provides a reference for the total
amount of dry air within the column of a particular measurement. Having two CO2 bands separated
by ∼0.4µm in wavelength in conjunction with the O2 A-band also allows to partially account for
scattering by aerosols. While there is more than one degree of freedom contained in the retrieved CO2

profiles that can be exploited for explicit profile information, as was done by e.g., Kulawik et al. [10]
and Noël et al. [11], most publicized data products based on SWIR-measurements collapse the profile
into a column average. Other instruments allow for different approaches that retain more of the vertical
information. The Atmospheric Chemistry Experiment (ACE), for example, achieves this through solar
occultation measurements [12]. Other instruments, such as IASI, have a different vertical sensitivity
due to the spectral location of measured absorption bands in the TIR. Crevoisier et al. [13], for example,
retrieved the upper tropospheric part of the CO2 column between 11 km and 15 km using absorption
bands at wavelengths 4.3µm and 15µm.

XCO2 retrievals are exceptionally challenging due to the imposed limits on systematic biases.
Since one of the main applications of space-based XCO2 is the estimation of surface carbon
fluxes [14], systematic biases in the XCO2 values can result in biases in the inferred surface fluxes.
Chevallier et al. [15] have investigated the sensitivity of their flux inversion system and found that
systematic biases on the order of ∼0.3 ppm can significantly alter the inferred surface fluxes. In order
to both retain a significant number of measurement scenes as well as improve on the systematic biases,
multiple scattering has to be included in the radiative transfer calculations of the retrieval forward
model [16–21]. While e.g., Nelson et al. [22] have explored the possibility of applying a clear-sky
only retrieval, in which atmospheric scattering is not considered, they found that scene selection
and post-retrieval filtering must be performed much more aggressively to keep retrieval errors low.
As such, the preferred option at the time being is to include atmospheric scattering in contemporary
XCO2 retrieval algorithms, such as RemoTeC [23], the University of Leicester (UoL) algorithm [24,25],
the NIES algorithm [26], WMF-DOAS [27,28], FOCAL [29,30], and the NASA Atmospheric CO2

Observations from Space (ACOS) algorithm [31].
Radiative transfer (RT) calculations are a significant computational burden on most retrieval

algorithms when they include atmospheric scattering. Additionally, retrieval algorithms do not just
require the calculated top-of-the-atmosphere (TOA) radiances, but also first-order derivatives of said
TOA radiances with respect to various atmospheric or surface parameters, also called weighting
functions. Having to compute these derivatives adds additional computational cost. Performing
multiple scattering (MS) TOA radiance calculations in a purely monochromatic fashion would cause



Atmosphere 2020, 11, 1219 3 of 24

the total duration for a single retrieval to be several hours, which would make routine data operations
prohibitively expensive and slow. The aforementioned retrieval algorithms thus employ so-called
fast RT acceleration methods to obtain speed-ups of around two orders of magnitude to reduce the
computation time for single retrievals down to merely a few minutes. In this work we focus on three
specific acceleration techniques that are routinely employed by the following algorithms: RemoTeC
uses linear-k [32], UoL uses a principal component-based method [33], and ACOS uses low-streams
interpolation [34].

For the first time, we present a direct comparison of these three acceleration techniques in a
like-for-like manner using XCO2 retrievals from OCO-2 measurements. All three fast RT methods
were implemented into the UoL retrieval algorithm in a unified manner, such that the only difference
is the fast RT method itself, with all other parameters and retrieval inputs being the same. Previously,
Connor et al. [35] conducted a study to investigate various forward model errors in OCO-2 XCO2

retrievals, but did not include the impact of radiative transfer itself. Our work is therefore the first
to attempt to quantify forward model errors in retrieved XCO2 due to radiative transfer acceleration
techniques using the same retrieval algorithm.

2. Materials and Methods

2.1. The UoL Algorithm

The UoL algorithm was previously described by Cogan et al. [24], Yang et al. [25], Somkuti [36],
however we summarize the main aspects that are of relevance to this work. Very similar to the
ACOS and RemoTeC algorithms, the UoL algorithm considers a model atmosphere of horizontally
stratified layers in which all physical properties, such as temperature and humidity, are homogeneous
within each layer. Layers themselves are bounded by levels that are defined at fixed pressure values.
The pressure level grid is dynamically generated for every individual scene: the first five levels are
defined at 10 Pa, 100 Pa, 1000 Pa, 5000 Pa and 8000 Pa. The sixth level is set halfway between 8000 Pa
and the tropopause, as obtained through the formula by Reichler et al. [37], and the seventh level is
the tropopause pressure itself. The remaining 13 levels are linearly spaced between the tropopause
pressure and the surface pressure. Rather than using the standard UoL processing chain for the we
take the meteorological data [38] directly from the operational OCO-2 processing stream and sample
them at the aforementioned pressure levels. Atmospheric CO2 fields, used as prior profiles, are taken
from the General Circulation Model of Laboratoire de Meteorologie Dynamique (LMDZ) [39]. We use
a Lambertian surface model for both land and ocean scenes, and prior values are estimated using the
observed continuum radiance in each of the three bands.

The main retrieval set-up remains similar to other UoL data products, such as the UoL full-physics
XCO2 and XCH4 products [40], or the UoL Proxy XCH4 product [41,42]. We retrieve a CO2 profile
along with a temperature profile offset (additive value applied to the full temperature profile), a water
vapor profile scaling factor, surface pressure, three surface albedo polynomial coefficients (quadratic),
two coefficients for wavelength dispersion (linear), and finally two coefficients (scale and slope) for
solar-induced chlorophyll fluorescence for land scenes. When the surface pressure changes during
the retrieval, the new surface-level value of the atmospheric profiles (gases, temperature) is obtained
through linear interpolation. Additionally, we also retrieve three coefficients for empirical orthogonal
functions (EOFs) which are added to the final convolved modelled spectra (see O’Dell et al. [31]
for details) in order to reduce spectral residuals coming mainly from spectroscopy uncertainties.
We have derived the EOFs from a separate set of retrievals and use the same EOFs, regardless
of the chosen fast RT method. The EOF shapes mainly reflect errors in the spectroscopic tables
and the specific implementation in the gas optical property calculations. We thus do not expect
them to vary significantly between the three fast RT models. Lastly, we retrieve four different
aerosol types: a tropospheric fine mode, a tropospheric large mode, a cirrus cloud aerosol as well
as a stratospheric sulphate-type aerosol. The cirrus cloud aerosol is initialized with a fixed optical
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depth of 0.005, and the altitude and width are derived from a latitude-dependent climatology [43].
The stratospheric sulphate-type aerosol is equally initialized with a fixed prior optical depth of 0.005,
however at a higher altitude of 20 km. O’Dell et al. [31] point out that the stratospheric aerosol layer
was introduced in V8 of the OCO-2 data product to compensate for a systematic bias in ocean
glint retrievals in lower southern latitudes. The two tropospheric aerosol priors are calculated
using model fields from the Copernicus Atmosphere Monitoring Service (CAMS). We group the
eleven aerosol species into a fine and a large mode. The fine mode consists of one sea salt size bin
(0.03 µm ≤ reff ≤ 0.05 µm), sulphates, organic matter and black carbon. The large mode contains the
two other sea salt size bins (0.05 µm ≤ reff ≤ 5 µm, 5 µm ≤ reff ≤ 20 µm) as well as the two larger
mineral dust size bins (0.55 µm ≤ reff ≤ 0.9 µm, 0.9 µm ≤ reff ≤ 20 µm). The smaller mineral dust size
bin (0.03 µm ≤ reff ≤ 0.55 µm) is split into the fine and large modes. We retrieve a full extinction profile
for each of the four aerosol mixtures, where the prior covariance matrices with nonzero off-diagonal
elements restrict the actual degrees of freedom to less than ∼2. Contrary to Wu et al. [44], we do not fit
a zero-level offset in any of the three bands.

The retrieval uses a nonlinear Levenberg-Marquardt type minimization technique inside an
optimal estimation framework described in detail in Rodgers [45]. In this current setup, we set the
Levenberg-Marquardt parameter to a higher initial value of γ = 500. We made this change as the
convergence of retrievals improved significantly, compared to the value of γ = 10 which is used for
UoL GOSAT XCO2 retrievals.

2.2. Fast Radiative Transfer

In the context of trace gas retrievals, fast radiative transfer methods aim to reduce the
computational effort involved in calculating top-of-atmosphere radiances and weighting functions.
One can generally think of two broad categories: one way of achieving that reduction in computational
effort is to fundamentally change the way how radiances and weighting functions are calculated.
The other way involves strategies that lead to a reduction of the amount of calculations that are
required to obtain a full-resolution TOA spectrum as well as the related weighting functions. The work
of Reuter et al. [29,30] is a recent example of the former category. Their so-called FOCAL forward
model utilizes a radiative transfer scheme that involves a single scattering layer, however does not
require solving the full radiative transfer equation including multiple scattering. The fast RT methods
in our study fall into the latter category, being methods that reduce the number of high-accuracy RT
calculations and then apply some form of interpolation or up-scaling to obtain the results for every
spectral point. One main advantage of the methods compared to e.g., FOCAL is the fact that they do
not require any change to the forward model itself. Using FOCAL would require a change in the setup
of the model atmosphere, which would make comparisons more difficult.

The UoL algorithm uses three radiative transfer models. Scalar single scattering and polarized
second orders of scattering calculations are performed using the model of Natraj and Spurr [46] (2OS).
Scalar multiple scattering portions of the radiances and weighting functions are calculated using
either the LIDORT model [47], or the dedicated two-stream solver (TWOSTR) [48] if the number of
quadratures is exactly two. Both LIDORT and TWOSTR are radiative transfer solves which utilize the
discrete-ordinates method. The number of discrete ordinates, often referred to as “streams” (Nstream),
is a free parameter that can be used to control the accuracy of the calculation. Higher values produce
more accurate results at the cost of computation time.

The I, Q and U components of the TOA Stokes vector are calculated in the UoL algorithm
as follows:  I

Q
U

 =

IMS
0
0


︸ ︷︷ ︸

LIDORT, TWOSTR

+

ISS + Icorr

Q2OS
U2OS


︸ ︷︷ ︸

2OS

. (1)
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IMS is the multiple-scattering, or, diffuse contribution to the total radiance, calculated either by LIDORT
or TWOSTR. ISS is the single-scatter contribution, whereas Icorr is the contribution to the single-scatter
intensity due to polarization. Q2OS and U2OS are then the Q and U components of the Stokes vector,
calculated by 2OS as well.

In the following sections, the various acceleration techniques used in this study are quickly
introduced, however the reader is encouraged to consult the corresponding publications which
describe the technical details of each method. The fast RT methods described below, as implemented in
the UoL algorithm, use same three underlying RT codes mentioned above (2OS, TWOSTR, LIDORT).

2.2.1. Low-Streams Interpolation (LSI)

The method introduced by O’Dell [34] is an acceleration technique which shares some
fundamental aspects with the correlated-k method first described by Ambartzumian [49]. LSI makes
a distinction between a low-stream calculation, and a high-stream calculation and refers to MS
calculations in which the number of discrete ordinates (Nstream) is chosen to be either a low or a
high value. Analyzing the difference between a low-stream and a high-stream calculation, one finds
that it is a smooth function of the total column gas optical depth τgas. The main LSI strategy is therefore
to use a handful of high-stream calculations at some chosen intervals of τgas and use the results of those
calculations to interpolate the TOA radiances and weighting functions at any τgas. O’Dell [34] found
that this basic concept requires the introduction of a second dimension in addition to τgas to account
for differently shaped gas absorption profiles, especially for spectral bands which include more than
one absorbing gas. LSI also features a separate calculation to account for the spectrally varying aerosol
scattering and surface properties, without which the reconstructed radiances and weighting functions
would feature a prominent residual slope.

In practice, the LSI technique is applied in the following manner. Given any retrieval window,
the regular line-by-line RT calculations are performed using a low number of streams (e.g., 2) for the
multiple-scattering RT model. Then, for a set of boundaries in τgas-space, spectral points are collected
and a mean atmosphere is constructed to represent the gas and aerosol profiles of those spectral points
within a bin. Then, the RT calculations are performed for both a low and high value (e.g., 16) of Nstream

for the multiple-scatter contributions. Using those binned calculations, an interpolation scheme is
applied to correct the line-by-line calculations that were originally performed for a low value of Nstream.

The reduction in computational effort is achieved by having reduced the number of MS
calculations with a large value of Nstream, and the speed-up of LSI is mainly determined by how
fast the low-stream calculations can be performed compared to the high-stream ones, as well as
the number of chosen bins in τgas-space. Using the dedicated TWOSTR solver for the low-stream
calculations improves the performance gain, compared to running the more general LIDORT solver
with Nstream = 2.

O’Dell [34] state the relative root-mean-square errors of the LSI method radiances for various
example cases using GOSAT instrument specifications. The errors generally grow with increasing
solar zenith angle as well as total cloud and aerosol optical depth, and range from 0.003% (weak CO2

band, nadir, thin water cloud scenario) to 0.420% (O2 A-band, glint, multi-layer clouds plus thin
near-surface aerosol).

2.2.2. Principal Component-Based Method (PCA)

The principal component-based method (PCA) was first independently described by
Natraj et al. [50] and Liu et al. [51], and subsequently extended by Somkuti et al. [33]. At its core,
the PCA-based method is very similar to LSI. Full line-by-line low-stream calculations are upscaled
to high-stream calculations using the results of a handful of “binned” calculations. As with LSI,
the speed-up is achieved via the reduction of high-stream MS calculations. The binned calculations,
however, as well as the upscaling or interpolation part, are different in detail.
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Similar to LSI, spectral points are first collected into bins that are separated in τgas-space. For each
bin, a so-called optical property matrix is constructed, which holds all relevant per-wavelength
profile information that is required to construct the full atmospheric profiles for every spectral point.
The optical property matrix is then decomposed using principal component analysis. Using those
principal components, we can not only reconstruct the mean binned atmospheric profile, but also
a number of perturbed atmospheric states. The crucial difference between LSI and the PCA-based
method is the usage of the perturbed atmospheric states which allow for a better reconstruction for
spectral points that diverge from the mean atmospheric state. The number of principal components,
NEOF, therefore is a free parameter that allows controlling the reconstruction accuracy, in addition to
the number of τgas bins.

In contrast to both LSI and linear-k, the PCA-based method does not introduce any explicit way of
accounting for either vertical absorption structure or wavelength-dependent optical properties. Instead,
both phenomena are implicitly taken into account through the principal component analysis of the
optical state matrix. We also want to note that the optical state matrix as described in Somkuti et al. [33]
is only one possible way of utilizing the PCA-based method. Depending on the inputs of the forward
model, the contents of the optical state matrix can vary to feature more or less elements.

For the retrievals discussed in this publication, we used two different values of NEOF: one and
five, and the retrieval sets are labelled PCA (1) and PCA (5), respectively. Somkuti et al. [33] quantify
the radiance errors for a large ensemble of GOSAT scenes. They find that the reconstruction accuracy
depends on the number of principal components (PC), as per design. Increasing the number of used
PCs from one to two reduces the relative radiance errors by an order of magnitude. For two PCs,
the relative radiances errors are stated to be on the order of less than 0.001% for the weak CO2 band
over land, and up to 0.01% for the O2 A-band for ocean scenes.

2.2.3. Linear-k

The linear-k method, described in Hasekamp and Butz [32], follows a different strategy by
omitting the low-accuracy multiple-scattering calculations altogether. Single-scatter contributions,
like in LSI and the PCA-based method, are calculated exactly for every spectral point in a given
retrieval band. Multiple-scattering contributions, however, are only calculated for binned atmospheric
profiles. Derivatives from those binned calculations are then used to obtain the multiple-scattering
radiances for all spectral points. Due to most RT models not providing second-order derivatives,
the surface and atmospheric weighting functions have to be calculated through interpolation from
the binned calculations. Like LSI, linear-k uses an explicit formulation to account for the vertical
structure of gas absorption profiles. In our implementation, we use 15 bins that are equally spaced in
log τabs-space, where τabs is the total column optical depth due to absorption of gases and aerosols.
Another difference in the UoL-implementation, compared to how the method is outlined in Hasekamp
and Butz [32], is that the partial derivative with respect to the scattering optical depth is calculated
using finite differences. This effectively doubles the number of the high-accuracy multiple scattering
calculations to 30 per band.

The radiance errors induced by the linear-k method were explored by Hasekamp and Butz [32]
for two cases. They state that the radiance residual errors are well below 0.1% for the low-aerosol case
in the O2 A-band for an OCO-type instrument configuration. The error increases to up to 0.4% for a
high-aerosol case.

Compared to the other two methods, the potential speed-up using the linear-k method is
significantly larger due to omitting the line-by-line multiple-scattering calculations. For a typical
XCO2 retrieval using the UoL algorithm (using either LSI or PCA), roughly half of the CPU time is
spent in the TWOSTR model, which is used to calculate the low-stream line-by-line MS contributions.
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2.3. XCO2 Retrievals from OCO-2

We processed a subset of OCO-2 scenes, using calibrated, geolocated radiances version V8r [52]
from May 2016 with all three fast RT methods mentioned in Section 2.2. Due to limited computational
resources, we reduced the scenes in the following way. First, we skip all scenes from even-numbered
days in May 2016. Then, we remove all scenes that were taken in either target or transitional observation
modes, as well as all scenes that do not have a land fraction of either 0% or 100%. Additionally,
we require all scenes to have a signal-to-noise ratio of at least 100 in all three bands. This subset consists
of ∼35,000 ocean glint, ∼46,000 land glint, and ∼42,000 land nadir scenes, with all eight footprints
being roughly equally represented (∼15,000 to ∼16,000 each). The sensor (or viewing) zenith angles
for the glint observing geometry is usually between ∼14◦ and ∼47◦, and nadir sensor zenith angles
are mostly between 0◦ and ∼0.6◦.

The subset was chosen to be balanced between both a sufficient scene yield and to span a wider
space of relevant geophysical parameters. Our scene selection was performed with OCO-2 lite files
version V8r, using all warn levels. The warn level system used in the V8r version of the OCO-2 lite files
was designed to facilitate a simple way for users to select XCO2 retrievals based on their individual
requirements for data scatter and throughput [53]. Starting from warn level 0, which contains the
“best” scenes in a given day in terms of scatter, each subsequent warn level adds more scenes and thus
also increases XCO2 scatter. The warn level classification is inherently tied to geophysical parameters
such as aerosols, surface roughness or the scene solar zenith angle. Thus, selecting only the scenes with
the lower warn levels would significantly bias the subset towards clear scenes with very low aerosols.
Since we are not using the ACOS algorithm, the warn level assignment does not fully translate to the
UoL algorithm since many of the atmospheric inputs (most importantly, aerosols) are different. Using
the subset described here, however, yields a solid set of cloud-free scenes with sufficient signal-to-noise
ratio and a significant coverage of the crucial geophysical parameters to analyze the performance of
the three fast RT methods.

Figure 1 shows the geographical distribution of the used scenes as well as their observation modes.
Note that since release V9(r) [54], warn levels are no longer reported in the product files.

LN
LG
OG

Figure 1. Global map of used OCO-2 scenes as well as their observation modes (LN = land nadir,
LG = land glint, OG = ocean glint).

2.4. Filtering and Bias Correction

We treat each of the four sets of retrievals individually, meaning that we apply a new set of
filters and derive separate bias correction formulations for each set. As a first step, we determine the
so-called footprint bias. The underlying assumption is that the XCO2 across a full OCO-2 frame should,
on average, be the same, and any systematic difference of one footprint to another one is an un-physical
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bias. This footprint bias is determined by collecting all retrievals for which all eight footprints of
the same frame converged successfully, and compute the median XCO2 across each of those frames.
The difference between each individual footprint XCO2 and the frame median XCO2 then exhibits
systematic biases that we further correct for. Figure 2 shows the magnitude of the footprint biases
for the four sets. Note that we calculate these for a combined set of land-nadir and land-glint scenes,
as there were no full frames for the ocean-glint subset. However, the footprint biases are very similar
across all three observation modes in O’Dell et al. [31] and we assume that the correction we derive for
land scenes holds for ocean scenes as well.

1 2 3 4 5 6 7 8
Footprint #

−0.50

−0.25

0.00
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0.50

0.75

Fo
ot

pr
in

t b
ias

 [p
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]

LSI
PCA (1)
PCA (5)
linear-k
ACOS V8

Figure 2. Footprint biases, calculated using the difference of the retrieved XCO2 between a given
footprint and the frame median, where we only use frames where the retrievals for all eight footprint
converged. The displayed values represent the medians of all differences for the eight footprints
respectively. Along with the four retrieval sets, we also show the footprint biases from the ACOS
OCO-2 V8 data product (land scenes).

In Figure 2, we can see some resemblance between the obtained footprint biases for the four
retrieval sets and the values from the ACOS OCO-2 V8 product. This further lends credence to the
assumption that the observed biases are a result of instrumental effects or instrument calibration.
We also see that the footprint biases are essentially the same across the different fast RT methods,
diverging by less than 0.05 ppm. The different scale between the four retrieval sets and the ACOS
OCO-2 V8 values could potentially be caused by temporal sampling, as the footprint biases from
ACOS OCO-2 V8 are obtained from a much larger set of OCO-2 retrievals.

After subtracting the footprint biases from the retrieved XCO2 we explore post-retrieval filtering
and bias correction. Our filtering and bias correction strategy follows the general idea that has been
utilized in many publicly available XCO2 data sets [31,40]. Each scene is first assigned a corresponding
truth value. We use a set of three models which proved four-dimensional carbon dioxide fields obtained
through inversion of surface and aircraft measurements: the University of Edinburgh model version
4 (UoE, [55]), CarbonTracker 2019 (CT2019, [56]) and the CAMS-LMDZ model version 18r2 [57].
For each set of retrievals, we sample all three models at the corresponding grid cell in which the
measurement lies, and then use linear interpolation to obtain the model CO2 fields at the correct
scene times and pressure levels. In the pressure dimension, we interpolate in log10-space. To produce
column-averaged dry-air mixing ratios from the model fields that can be compared to the OCO-2
retrieved ones, we multiply the sampled model CO2 fields with the retrieval pressure weighting
function (see [58] for details) of each individual scene. We then apply an averaging kernel (AK)
correction according to [59] to remove the effect on the retrieval CO2 prior profile. Since the retrieval
averaging kernel matrix, defined as

A =
(

KTS−1
ε K + S−1

a

)
KTS−1

ε K, (2)
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is different for every retrieval subset and scene, we perform the model sampling procedure for all
combinations of fast RT methods and model. In the above equation, K is the retrieval Jacobian
at the final iteration, Sε is the instrument noise covariance and Sa is the prior retrieval covariance
matrix. Combining the pressure weighting function h and the AK correction in one step, we write the
model-sampled XCO(model)

2 as

XCO(model)
2 = ∑

l

[
CO(prior)

2,l +
(

CO(model)
2,l −CO(prior)

2,l

)
al

]
hl , (3)

where the index l refers to the retrieval pressure level grid, CO(model)
2,l is the model CO2 profile sampled

at the scene location and scene pressure grid, hl is the retrieval pressure weighting function according

to O’Dell et al. [58], al is the normalized retrieval CO2 averaging kernel and CO(prior)
2,l is the retrieval

prior CO2 profile. The normalized averaging kernel a can be calculated from the full averaging kernel
matrix A (see Equation (2)) via

al =
hTA

hl
. (4)

In Figure 3, we show the median normalized averaging kernels for the LSI retrieval subset, broken
down by observation mode. The figure also shows the difference between the three remaining subsets
to the LSI subset, highlighting the slightly different behavior. The two subsets using the PCA-based
methods have very similar, and the linear-k retrievals exhibit a systematically different, averaging
kernel in the upper region of the atmosphere from about 400 hPa upwards, with larger differences
appearing at the uppermost levels < 100 hPa.
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Figure 3. AK comparison plot for land nadir (LN), land glint (LG) and ocean glint (OG) scenes.

After collecting the per-scene and per-model AK-corrected model XCO2, we then pick the median
value of the three model XCO(model)

2 . Next, we use the per-scene model medians as truth proxy
values to investigate filtering and bias correction. The process is performed in a mostly manual
way—we study the biases XCO[RT method]

2 − XCO(model)
2 as functions of various explanatory variables

that are either results of the retrieval or have other geophysical meaning and change with every
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measurement. Examples would be the retrieved surface pressure, retrieved aerosol optical depth or
the reduced chi-squared statistic of the forward model fit. We then obtain a set of filter thresholds
for each observation mode to screen out retrievals that show large biases against the truth data.
In the most recent release of the ACOS OCO-2 Lite files (V10, [60]), there are four bias correction
parameters for both land observation modes: dPfrac = XCO2(1− P(retrieved)

surf /P(prior)
surf ), the natural

logarithm of the retrieved large-type aerosol depth (dust, water cloud, sea salt), δ∇CO2 (change in
vertical gradient between prior and retrieved CO2 profile) and small-type retrieved aerosol optical
depth. We acknowledge that the manual derivation of these filter thresholds is flawed, however
applying methods such as described by Mandrake et al. [53] are outside the scope of this study.
We want to emphasize at this point, that our goal is not produce a set of best-quality XCO2 retrievals
from OCO-2, but rather find an acceptable compromise between spatial coverage and overall bias with
respect to the truth proxy. Once useful bias correction parameters have been identified, a least-squares
fit is applied to the (retrieved-model) XCO2 differences in some given parameter range. As will be
shown later, we ended up with two sets of filter variable thresholds—one for the LSI, PCA (1) and
PCA (5) retrievals, and a second set for the linear-k retrievals.

3. Results

3.1. Bulk Statistics

Due to the non-linear nature of the retrieval forward model and the small differences in
the forward model radiances and Jacobians, we expected different throughput, iteration counts,
convergence behavior and fit residuals. Unsurprisingly, we found that in terms of these bulk statistics
the four sets of retrievals (after parametric bias correction and filtering) grouped into two groups,
with linear-k being distinctly different from the other three. Figure 4 shows the overall number of
iterations as well as the distribution of fit residuals for the O2 A-bands. It shows that the retrievals using
linear-k were shifted towards a higher number of iterations before reaching convergence. Additionally,
we observed that linear-k produced larger fit residuals in the O2 A-band for land scenes, however that
behavior was not seen for the other two bands (not shown in Figure 4). The RemoTeC algorithm which
utilized linear-k, generally ran for a larger number of iterations than the ACOS or UoL algorithms.
Wu et al. [44], for example, state the acceptable number of iterations to be less than 30, whereas ACOS
and UoL algorithms tend to set the iteration limit to 10 or less. Note that the RemoTeC algorithm
applied on OCO-2 measurements is faster (∼45 s per retrieval) than both ACOS and the UoL algorithm,
despite the larger number of iterations [61].

Further exploring the differences in the O2 A-band fit χ2 values over land, we found that for a
scene-by-scene comparison, over 80% of scenes showed differences larger than 5% when looking at
LSI, PCA (1) and PCA (5) subsets. For linear-k, only about 43% of scenes fulfilled that criterion.
This discrepancy is explained by how aerosols, and thus scattering, affect the fast RT method.
As mentioned earlier, the linear-k algorithm is a categorical outlier as it does not rely on some form
of “low-accuracy” multiple-scattering calculations which results in less accurate reconstruction of
aerosol-related Jacbobians, when compared to LSI or the PCA-based method. We show in Figure 5 that
the scenes for which linear-k obtained a worse fit were clearly scenes with higher optical aerosol load
in the first iteration-atmosphere. The impact of the prior aerosol load also explains why the difference
in fit quality was not seen for ocean glint scenes. Ocean scenes exhibited a different population of
prior aerosol optical depth, as given by CAMS, and had fewer scenes with total optical depths of 0.15
and higher.
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Figure 4. Overview of iteration numbers and fit residuals for the O2 A-band. The χ2 statistic for
the other two bands is very similar across the four retrieval sets. For ocean glint scenes, the four
sets show slightly shifted χ2 populations, with low-streams interpolation (LSI) having the lowest
distribution mode.
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Figure 5. This figure depicts the distribution of prior optical depth for the CAMS-derived tropospheric
aerosols, for three subsets of scenes. The three subsets were separated by the relative differences of the
fit χ2 for the O2 A-band between linear-k and the PCA (5) runs. From the distributions, it is apparent
that the linear-k fit χ2 were more similar to the PCA (5) retrieval set when the prior aerosol optical
depths were small. The three subsets were roughly equally large and contained between 23,000 and
26,000 scenes each.

A more relevant aspect is how these differences in fit residuals propagated further into the
retrieved XCO2. Using three subsets of different prior total column aerosol depths τaero (excluding
cirrus cloud and stratospheric aerosol), we analyzed the difference in retrieved XCO2 for the linear-k
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and PCA (5) sets and summarize them in Table 1. The statistics obtained from that comparison highlight
that the final XCO2 mostly differed by less than 0.45 ppm in term of the inter-quartile range (IQR)
when considering scenes with prior τaero < 0.05, and by less than 1.01 ppm for 0.05 < τaero < 0.15.
The reference wavelength for aerosol optical depth was 13,000 cm−1 (∼769.32 nm).

Table 1. Statistics of the retrieved XCO2 differences (∆XCO2), linear-k minus PCA (5), for different
bins of prior tropospheric aerosol optical depth τaero. Footprint biases have already been removed
according to Figure 2. σ is the standard deviation of the differences, and σ̃ is a robust scatter of the
differences, calculated as σ̃ = (P95 − P5)/3.289, where Pi is the i-th percentile of the differences. σ̃ ≈ σ

(standard deviation) for a normally distributed set of numbers.

∆XCO2 [ppm]

∆ σ̃ IQR N

τaero ≤ 0.05 +0.03 0.28 0.45 23174
0.05 < τaero < 0.15 −0.06 0.93 1.01 25639
τaero ≥ 0.15 −0.33 1.45 1.62 26173

Finally, we investigatee the spatial context of the differences of the unfiltered, footprint
bias-corrected XCO2 across the four fast RT sets. As a measure of spread we use the difference
between maximal and minimal value of the four scene-matched values,

maxmin(x) = max (x)−min (x), (5)

x = {XCO[LSI]
2 , XCO[PCA (1)]

2 , XCO[PCA (5)]
2 , XCO[linear−k]

2 }. (6)

Shown in Figure 6, the regions that exhibited large spread were those associated with higher
aerosol loading, such as the Sahara and Arabian deserts. We also observed larger spread in the
snow-covered Asian Taiga, the Greenland ice sheet and parts of South Asia.
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Figure 6. Map showing the range of retrieved (unfiltered) XCO2 for the four fast radiative transfer (RT)
runs, gridded to 3◦ × 3◦ bins.

If we include all scene-matched XCO2 values over land, we see that 75% of scenes exhibited a
spread of less than 1.02 ppm. That spread reduced to less than 0.23 ppm if we excluded the linear-k
set of retrievals in that statistic. This statistic, however, does not account for post-retrieval filtering
and parametric bias correction, which are two fundamental aspects of data quality control. In the
next section, we explore whether linear-k remains out of family once filters and bias correction have
been applied.
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3.2. Filter Thresholds and Bias Correction

Post-retrieval filters as used in e.g., Cogan et al. [24], O’Dell et al. [31] or Wu et al. [44] are designed
to achieve the following two goals. First, they are set to remove scenes that are large outliers in terms
of XCO2 such as e.g., retrievals involving thick aerosol layers lead to large biases. Secondly, filter
thresholds are then optimized to find a compromise between scene throughput and XCO2 scatter,
and some research groups might favor one slightly over the other. For our study, we heavily favor
retaining more scenes compared to reducing XCO2 scatter against the truth proxy. In addition, we have
manually tuned the filters such that the total number of scenes fulfilling the filter thresholds are
roughly the same for any given observation mode. The motivation for this strategy is to observe the
differences in retrieved XCO2 across a larger parameter space, and more restrictive filtering would
counteract that effort.

In the prior section, we observed different convergence and fit quality characteristics between
linear-k and the other three retrieval sets. Therefore we decided on filter thresholds that for some
parameters were different for linear-k, but the same for LSI, PCA (1) and PCA (5). The differences
between the two groups of filter thresholds were small and were adjusted such that the four retrieval
sets exhibited similar throughput numbers. Table 2 lists the filter threshold that determines whether
a retrieval is considered good quality, split up into fast RT method and observation type. Note
that we use the same definition of δ∇CO2 as in the ACOS V8r and V10r lite files [54,60], which is
δ∇CO2 = (c20− c13)

(retrieved) − (c20− c13)
(prior), with ci being the prior or retrieved CO2 profile at level

i, and i = 20 being the surface level. ∆psurf has also retained its meaning, which is the difference

between the retrieved and prior surface pressure: ∆psurf = p(retrieved)
surf − p(prior)

surf . Overall, we retain
about half of all processed scenes.

Table 2. Filter thresholds for the different fast RT methods and OCO-2 observation modes. The filters
concerning the fit χ2 statistic and the number of both non-divergent and divergent iterations are
applied to all three observation modes in addition to the ones listed below. Retrieval sets LSI, PCA (1)
and PCA (5) use the same filters, whereas the linear-k filters are listed in the rightmost column. Values
are in ppm.

All Observation Modes

LSI PCA (1) PCA (5) Linear-k

Niterations ≤4 ≤9
Ndivergent =0 =0
χ2 Band 1 <3.5 <4.5
χ2 Band 2 <3.5 <3.5
χ2 Band 3 <3.0 <3.0

Land Nadir Additional

LSI PCA (1) PCA (5) Linear-k

δ∇CO2 [ppm] ≥0, ≤13 ≥−1, ≤13

Throughput 17,291 (41.7%) 17,541 (42.5%) 17,417 (41.8%) 16,587 (39.5%)

Land Glint Additional

LSI PCA (1) PCA (5) Linear-k

∆psurf [hPa] ≥−1.5, ≤2.5 ≥−1.5, ≤2.5
δ∇CO2 [ppm] ≥0, ≤20 ≥−1, ≤20

Throughput 17,247 (37.5%) 17,641 (38.4%) 17,419 (37.6%) 18,119 (38.8%)

Ocean Glint Additional

LSI PCA (1) PCA (5) Linear-k

δ∇CO2 [ppm] ≥−10, ≤4 ≥−10, ≤4

Throughput 21,867 (62.6%) 21,345 (62.3%) 21,638 (62.3%) 22,615 (65.0%)
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We saw a slightly different behavior in the parametric bias correction: the obtained bias correction
coefficients for all four sets were quite similar for the land nadir observation mode, however differed
significantly for both land glint and ocean glint modes. This difference ties back into the differences in
the accuracy for aerosol-related Jacobians, which are amplified in glint viewing angles. Note that we
have attempted to use aerosol variables in addition to the parameters used in Table 3, but found no
improvement with respect to the comparison against the model truth. Figure 7 shows one of the bias
correction parameters and how the least-squares fit captures the bias across the parameter range.
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Figure 7. Example for parametric bias correction for land glint observations and the δ∇CO2 parameter.
The orange, dashed line is obtained via a least-squares fit (see Table 3).

Table 3. Bias correction coefficients and intercepts, applied sequentially for each fast RT method and
observation mode. δ∇CO2 is in units of ppm, and ∆psurf is in units of hPa. ρ1 and ρ2 are the retrieved
surface albedo for band 1 and band 2, respectively.

Land Nadir

LSI PCA (1) PCA (5) Linear-k

0 ≤ δ∇CO2 ≤ 13 0.126 0.132 0.136 0.117
Intercept −0.70 −0.67 −0.66 −0.57

Land Glint

LSI PCA (1) PCA (5) Linear-k

−1 ≤ δ∇CO2 ≤ 13 0.111 0.121 0.127 0.095
−1.5 ≤ ∆psurf ≤ 2.5 −0.398 −0.364 −0.358 −0.218
Intercept −0.31 −0.35 −0.36 −0.26

Ocean Glint

LSI PCA (1) PCA (5) Linear-k

−10 ≤ δ∇CO2 ≤ 4 0.674 0.675 0.675 0.663
0.90 ≤ ρ1/ρ2 < 1.055 3.236 3.280 3.236 4.009
Intercept −3.42 −3.43 −3.37 −4.16

3.3. Final Comparison Using Bias-Corrected XCO2

With the retrieved and parametric bias-corrected XCO2, we performed a final, pair-wise
comparison of the retrieval sets. As we have established earlier (see Section 2.4), the sets of retrievals
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possessed different column averaging kernels for matched scenes as a result of the different forward
models. We therefore needed to correct the effect for every pair-wise comparison and wrote

∆XCO[A−B]
2 = XCO[A]

2 − XCO[B]
2 (7)

+ ∑
l

[
CO(prior)

2,l −CO(model median)
2,l

]
·
[

h[A]
l (a[A]

l − 1)− h[B]l (a[B]l − 1)
]

. (8)

In above equation, [A] or [B] correspond to one of the four fast RT retrieval sets, and the quantities
labeled with ·[A] are taken from that set of retrievals. This pair-wise comparison is only performed on
scene-matched retrievals which passed quality filtering in both sets. The results of the comparison for
three pairs of fast RT methods are shown in Figure 8 as well as Table 4 for the summary statistics split
into observation modes. In Table 4, we state three measures of scatter for each distribution of pair-wise
XCO2 differences, before and after bias correction: the standard deviation (σ), a robust standard
deviation (σ̃) defined as σ̃ = (P95 − P5)/3.289 with Pi being the i’th percentile of the distribution,
and the inter-quartile range (IQR) defined as P75 − P25.
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Figure 8. Geographical distribution of pair-wise differences between retrieval sets (gridded into
3◦ × 3◦ bins), as well as the corresponding histograms to the right of each map. (LN = land nadir,
LG = land glint, OG = ocean glint).
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Table 4. Statistics of retrieved, bias-corrected XCO2 between retrieval sets (scene matched). ∆ is the
mean, σ̃ is a robust scatter defined in Table 1, and IQR is the inter-quartile range P75 − P25 (Pi is the i’th
percentile). Values are in ppm.

Land Nadir Land Glint Ocean Glint

∆ σ̃ IQR ∆ σ̃ IQR ∆ σ̃ IQR

Before parametric bias correction
linear-k - PCA (5) −0.04 0.66 0.35 −0.10 0.50 0.40 −0.09 0.14 0.11
LSI - PCA (5) −0.07 0.58 0.26 −0.05 0.39 0.17 −0.02 0.05 0.04
PCA (1) - PCA (5) −0.03 0.47 0.17 −0.01 0.25 0.09 0.00 0.02 0.02

After parametric bias correction
linear-k - PCA (5) −0.04 0.65 0.39 −0.11 0.47 0.36 0.02 0.11 0.08
LSI - PCA (5) −0.02 0.58 0.28 −0.00 0.39 0.18 0.02 0.04 0.04
PCA (1) - PCA (5) −0.02 0.47 0.18 0.01 0.25 0.10 0.00 0.02 0.02

In Table 5, we finally summarize the overall statistics of the bias-corrected XCO2 against the
model median values. In contrast to Table 4, the scenes were not matched across the different retrieval
sets. The impact of parametric bias correction was strongest for ocean glint scenes, where the δ∇CO2

parameter was most effective and explains up to ∼70% of the observed variance between retrieved
XCO2 and model truth proxy. For both land nadir and land glint scenes, bias correction was less
effective and each parameter only explained between ∼3% and ∼8% of the observed variance. We
suspect the lower efficiency of the parametric bias correction for land scenes to be a result of a
combination of the sampling from the ACOS OCO-2 Lite files and the UoL algorithm aerosol system.
Ocean glint scenes had overall lower prior (tropospheric) aerosol optical depths (P95(τaero) ∼ 0.19)
when compared to land nadir and land glint scenes (P95(τaero) ∼ 0.54) and that was also reflected
in the retrieved values as well. Retrieved aerosol profiles for ocean scenes showed a small overall
reduction, when compared to the priors. For land nadir and land glint scenes, the retrieved aerosol
profiles showed an increase especially at the atmospheric levels closer to the surface. This resulted in a
generally smaller change of the retrieved CO2 profile for ocean glint scenes. We thus believe the bias
correction involving the δ∇CO2 to be more effective for small changes from the prior CO2 profile.

Table 5. Statistics of the differences between bias-corrected retrievals and model-median truth data,
where ∆ is the mean, σ̃ is a robust scatter defined in Table 1, and IQR is the inter-quartile range. Values
are in units of ppm.

Land Nadir Land Glint Ocean Glint

∆ σ̃ IQR ∆ σ̃ IQR ∆ σ̃ IQR

Before parametric bias correction
LSI −0.12 1.85 1.95 −0.02 1.79 2.03 −0.31 2.18 2.38
PCA (1) −0.07 1.87 1.90 0.04 1.78 1.98 −0.27 2.17 2.36
PCA (5) −0.03 1.88 1.90 0.05 1.78 1.99 −0.27 2.17 2.35
linear-k −0.02 1.71 1.85 −0.09 1.66 1.86 −0.27 2.12 2.27

After parametric bias correction
LSI −0.01 1.71 1.91 0.03 1.69 1.96 0.02 0.97 1.09
PCA (1) −0.02 1.69 1.87 0.06 1.65 1.93 0.01 0.97 1.09
PCA (5) 0.01 1.68 1.87 0.04 1.65 1.94 0.01 0.97 1.09
linear-k 0.01 1.66 1.83 −0.04 1.59 1.82 0.04 0.95 1.07

3.4. Computational Effort

We wanted to understand the implications of the various fast RT methods on real computational
effort for this set of OCO-2 retrieval scenes. For each processed scene, the total execution time was
recorded, which is the number of seconds between start and finish of a UoL algorithm instance.
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This execution time metric therefore also included non-CPU times related to reading and writing files,
or any times that a certain process had to idle due to other processes accessing some common data
(e.g., spectroscopy tables).

Table 6 lists a number of timings related to computational effort, however we have to stress the
following points regarding those statistics. First, the numbers strictly only hold for the particular
implementation of the fast RT scheme within the UoL algorithm, and therefore reflects many design
choices within the UoL algorithm code itself. It has not been specifically designed to make use of some
of the fundamental aspects of any fast RT method. As mentioned in Section 2.2, we had to perform
additional calculations for the linear-k run as the underlying radiative transfer codes do no allow
for a straight-forward computation of the partial derivative with respect to scattering optical depth.
Secondly, the retrievals were performed on the NERC JASMIN computing facilities. Since the total
execution time can also depend on the overall workload of the entire cluster, the numbers do not
necessarily predict the execution time on any other computing infrastructure.

Table 6. Comparison of computational effort for the various fast RT methods, where only scenes where
considered which were successfully executed for all four sets (N = 112,073). Times are in seconds.
The columns show the mean execution time per iteration (∆) and its scatter (σ̃, see Table 4), whereas
the total execution time sums up all performed iterations.

Land Nadir Land Glint Ocean Glint

∆ σ̃ Total ∆ σ̃ Total ∆ σ̃ Total

LSI 127 31 17.94 × 106 136 31 21.66 × 106 112 15 14.16 × 106

PCA (1) 133 30 18.64 × 106 156 32 24.44 × 106 148 31 18.55 × 106

PCA (5) 169 33 23.93 × 106 246 42 39.10 × 106 245 39 30.92 × 106

linear-k 99 31 15.31 × 106 109 29 18.76 × 106 93 18 12.74 × 106

Unsurprisingly, linear-k was the fastest algorithm and requires roughly 30% less time on
average than LSI. The retrieval set using only one principal component, PCA (1), was very close
in computational performance to LSI for land nadir observation modes, however diverged more for
the other two modes. The PCA (5) set was the only retrieval set which showed a significant increase
when moving to glint observation angles. This is expected as glint observation geometries require
more RT computational time than nadir-pointing ones O’Dell [34]. We saw in Figure 4 that linear-k
tended to use more iterations to reach convergence, however the total accumulated execution time in
Table 6 shows that the other fast RT methods took longer regardless. The discrepancy was largest for
ocean glint observation modes, where PCA (5) took over twice as much time in total. Finally, the large
spread of execution times, ranging from 15 to over 42 s, shows that a significant portion of the code
execution time (in this case) was spent on various non-CPU tasks and speed-ups could also be achieved
by architectural changes to the algorithm related to hard-drive access and other non-computational
sections of the code.

4. Discussion

Figure 8 and Table 4 contain the main result of our study. We show that after representative
post-retrieval filtering and parametric bias correction, the overall XCO2 bias between the various fast
RT methods is generally below 0.05 ppm with an overall scatter of σ̃ < 0.70 ppm. The corresponding
inter-quartile ranges (IQRs) do not exceed 0.40 ppm, and the differences between IQRs and σ̃ are larger
for land nadir and land glint modes. This mostly reflects the long-tailed aspect of the distributions
seen in Figure 8 for land scenes. The parametric bias correction procedure has a notable effect when
assessing the retrieved XCO2 against the truth proxy which is used for the bias correction itself.
Its impact is largest on ocean glint scenes where it reduces the scatter by over 50%. Comparing
this to the pair-wise differences between retrieval sets, we observe that the impact is less across all
observation modes and all compared pairs. We thus conclude that the bias correction procedure is
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roughly equally effective for all four retrieval sets, and, on average, adjusts the raw XCO2 values in
a similar way. This is also underlined by the bias correction coefficients in Table 3 which show little
difference between the four sets.

Putting the numbers of Table 4 into context, we can refer to overall biases and scatter of some
XCO2 product against a global truth proxy. O’Dell et al. [31] state biases and scatter for overpasses
over ground-based stations, which range between ∆ = 0.06 ppm and σ = 0.83 ppm (ocean glint) to
∆ = 0.30 ppm and σ = 1.04 ppm (land nadir). The same statistics against a set of global models exhibit
similar values for bias and scatter (not shown in O’Dell et al. [31]). Given those numbers, we can see
that the differences (∆) of bias-corrected XCO2 from retrievals using different fast RT methods are
generally smaller than overall biases to the truth proxies, by almost an order of magnitude. The way in
which the overall scatter between fast RT sets would enter the XCO2 scatter of a retrieval–model truth
comparison is not straightforward, mostly because a small, manual modification of filter thresholds
can change those statistics. Focusing on mean biases alone, we can therefore assume that the choice
of fast RT method would not cause a significant change in how a final XCO2 product compares to
truth proxies on a global level. This is implicitly already shown in Buchwitz et al. [40], where several
XCO2 and XCH4 retrieval sets were evaluated in a systematic way. However, the following caveats of
our study have to be considered. We only observed a small set of OCO-2 scenes, which after coarse
filtering leave the Sahara desert and South America regions mostly empty (see Figure 8). Those regions
are known to be particularly difficult for XCO2 retrievals, as a result of either high aerosol loading due
to mineral dust, or the presence of many small clouds that create biases via 3-D scattering effects [62].
As a result of our limited scene selection we are also biased towards clearer scenes in terms of aerosols,
however it does not strictly follow that we can consider our obtained differences between fast RT
methods as a lower bound.

The four retrieval sets across three different fast RT methods group somewhat distinctly into LSI
and PCA on one side, and linear-k on the other side. As we have discussed in detail in Section 2.2,
this grouping is expected due to the way these fast RT methods are designed on a fundamental level.
The biggest discrepancy is related to Jacobians which have strong multiple-scattering contributions,
such as any aerosol Jacobians. As the forward model is non-linear, even slight modifications to
Jacobians can lead to different results for both the final XCO2 and the remaining portion of the state
vector. We therefore employed a filtering and bias correction method for each individual retrieval
set to systematically correct the raw XCO2 values in a manner that resembles the procedure done in
most publicly available XCO2 data sets. Table 4 shows that the bias correction procedure reduces the
inter-set spread, which was low to begin with (∆ < 0.1 ppm). Looking at the values of the parametric
bias correction coefficients in Table 3, we observe that values across a certain parameter range for a
certain observation mode are comparable between the fast RT methods. The linear-k set behaves very
similarly for land nadir observations and the δ∇CO2 parameter. For land glint observations, we see
more discrepancies for both the δ∇CO2 and the ∆psurf parameters. Finally, for ocean glint observations,
the discrepancies pertain to the albedo ratio (ρ1/ρ2) parameter only. These observations are also
consistent with the notion that linear-k has a different sensitivity to aerosols—the retrieved CO2 profile
is linked to the retrieved aerosol profiles through interference errors [35].

When we compare the bias-corrected XCO2 values against the individually sampled model
medians (see Table 5), we observe that the linear-k set exhibits the most favourable statistics across
all observation modes, despite comparable and sometimes larger numbers of quality-filtered scenes
(see Table 2). When looking at the robust standard deviations as a measure of scatter, the linear-k set
of retrievals shows between 0.02 ppm (land nadir) and 0.05 ppm (land glint) lower values. While the
differences of scatter values themselves are statistically significant at N ∼ 20,000, we do not consider
this as evidence of superior performance of linear-k over the other methods. A more thorough and
automated process involving scene filtering and bias correction would be required to make an unbiased
assessment when the differences are less than a tenth of a ppm. The results, however, suggest that the
linear-k retrievals respond slightly more favorably to the filtering and bias correction process in our
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particular example. Despite that radiance residuals for PCA (1) can be twice as large as those of PCA
(5) [33], those differences do not impact the overall comparison against the truth proxy. This particular
observation suggests that one principal component is sufficient for OCO-2 XCO2 retrievals using the
PCA-based method.

Bulk statistics, as stated in Tables 4 and 5, of course, do not capture the entire characteristics of a
pair-wise comparison of two XCO2 retrieval sets. Figure 8 show several regions in which significant
differences occur. The overall most similar two sets of retrievals are the two runs using the PCA-based
method. Only 124 out of 3049 grid cells (at 3◦ × 3◦ aggregation), or roughly 4.1%, exhibit a difference
larger than 0.3 ppm. Interestingly, bias correction does not change that number much (123 out of 3049
without parametric bias correction). This itself is somewhat remarkable as the radiance residuals are
significantly dependent on the number of principal components used in the radiance reconstruction
process (see Somkuti et al. [33]). When comparing the LSI set against the PCA (5) set, we observe more
regional differences and the number of grid cells with differences larger than 0.3 ppm is 5.7% (171 out of
3020) after bias correction. Finally, comparing linear-k against PCA (5) shows 14.7% of 3◦ × 3◦ grid cells
(426 out of 2905) being more than 0.3 ppm apart (21.4% before bias correction). The different behavior
in the comparisons linear-k↔ PCA (5) and PCA (1)↔ PCA (5) suggest that the radiance reconstruction
of the various fast RT methods have a smaller impact than the reconstruction of the Jacobians.

We want to stress the shortcomings of our study to also highlight where our results are applicable,
compared to where they are not. The small subset processed in our study (see Section 2.3) does
not allow for any small-scale analysis. This means our results cannot make any statements about
discrepancies for e.g., city-scale XCO2 collections seen in OCO-3 [2]. Further, since we only use
OCO-2 scenes which were already quality filtered, the selected scenes are overall biased towards lower
aerosol loadings and are generally more well-behaved. This is evident in the number of iterations:
more than 80% of all retrievals converge in four iterations or less. As already mentioned before,
not all scenes necessarily fall into the “more clear” category, since we use the UoL algorithm setup,
which, compared to the ACOS algorithm, sources different prior values for many state vector variables,
most importantly aerosols. A look at Figure 8 reveals that regional differences can surpass ∼0.3 ppm,
even for the comparison between PCA (1) and PCA (5), which would likely cause differences in
applications such as surface carbon flux inversions [15]. Including a more extensive set, i.e., a longer
time series, of OCO-2 scenes might change the pattern of regional differences as well as fill in areas
which have no scenes at all in Figure 8. Moreover, the choice of fast RT method could also result in a
changed seasonal cycle due to the impact of seasonally varying aerosol distributions. We believe the
impact of the reconstruction accuracy of aerosol Jacobians to be significant, however that conclusion
could hold only for the UoL algorithm. Other algorithms, such as RemoTeC, characterize and retrieve
aerosols using a different approach (see e.g., Wu et al. [44]). Further, the aerosol sensitivity of OCO-2 is
comparable to that of GOSAT and GOSAT-2, however not for instruments like CO2M as its spectral
resolution is lower. In upcoming work, one could aim to disentangle the impact of weighting functions
from the radiance reconstruction using a hybrid fast RT scheme: radiances could be reconstructed
using one fast RT method, and Jacobians would be calculated using another method.

5. Conclusions

In this study, we implemented three contemporary fast radiative transfer (fast RT) methods into
the UoL XCO2 retrieval algorithm. This allowed us to explore the impact of the choice of fast RT
method with all other components of the retrieval algorithm being the same. We ran four sets of
retrievals (with two different settings for the PCA-based method) and performed post-retrieval filtering
as well as parametric bias correction to ensure that each set of retrievals is individually treated as they
would in any XCO2 data set processing. The bulk differences in XCO2 between the four sets show
just a small overall bias ∆ < 0.1 ppm, and the difference scatter being between σ̃ < 0.65 ppm (σ̃ being
a robust standard deviation) for land nadir, and σ̃ < 0.08 ppm for ocean glint. Regional differences,
however, can exceed 0.3 ppm (after bias correction) for 4% of the data points and can thus be considered
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significant biases. We find that land nadir observation modes exhibit the largest differences, and ocean
glint scenes the lowest. In the comparison against CO2 models, which were also utilized as truth
proxies for the parametric bias correction, linear-k shows the best performance, although the differences
are too small to make a more general recommendation in the context of OCO-2 retrievals. Further
studies, especially on small- and city-scale aggregates, need to be undertaken to understand the
full impact of fast RT methods on XCO2 retrievals in the shortwave-infrared wavelength region.
For example, the estimation of point-source emission rates, which relies on the determination of XCO2

(or XCH4) enhancements [9,63,64], can be affected by biases amongst other sources of uncertainty,
such as wind direction and wind speed. Given the similarity of results between the PCA (1), PCA(5)
and LSI sets of retrievals, we believe the reconstruction accuracy of atmospheric weighting functions
related to aerosols to be a major driver of the observed discrepancies between linear-k and the other
sets. Finally, the data quality filtering and bias correction approaches need to be formulated using
a more autonomous and reliable technique to reduce the impact of manually chosen parameters
and thresholds.
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